Coloring Local Feature Extraction

نویسندگان

  • Joost van de Weijer
  • Cordelia Schmid
چکیده

Although color is commonly experienced as an indispensable quality in describing the world around us, state-of-the art local featurebased representations are mostly based on shape description, and ignore color information. The description of color is hampered by the large amount of variations which causes the measured color values to vary significantly. In this paper we aim to extend the description of local features with color information. To accomplish a wide applicability of the color descriptor, it should be robust to : 1. photometric changes commonly encountered in the real world, 2. varying image quality, from high quality images to snap-shot photo quality and compressed internet images. Based on these requirements we derive a set of color descriptors. The set of proposed descriptors are compared by extensive testing on multiple applications areas, namely, matching, retrieval and classification, and on a wide variety of image qualities. The results show that color descriptors remain reliable under photometric and geometrical changes, and with decreasing image quality. For all experiments a combination of color and shape outperforms a pure shape-based approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تحلیل ممیز غیرپارامتریک بهبودیافته برای دسته‌بندی تصاویر ابرطیفی با نمونه آموزشی محدود

Feature extraction performs an important role in improving hyperspectral image classification. Compared with parametric methods, nonparametric feature extraction methods have better performance when classes have no normal distribution. Besides, these methods can extract more features than what parametric feature extraction methods do. Nonparametric feature extraction methods use nonparametric s...

متن کامل

Image authentication using LBP-based perceptual image hashing

Feature extraction is a main step in all perceptual image hashing schemes in which robust features will led to better results in perceptual robustness. Simplicity, discriminative power, computational efficiency and robustness to illumination changes are counted as distinguished properties of Local Binary Pattern features. In this paper, we investigate the use of local binary patterns for percep...

متن کامل

Automatic Face Recognition via Local Directional Patterns

Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...

متن کامل

Feature extraction of hyperspectral images using boundary semi-labeled samples and hybrid criterion

Feature extraction is a very important preprocessing step for classification of hyperspectral images. The linear discriminant analysis (LDA) method fails to work in small sample size situations. Moreover, LDA has poor efficiency for non-Gaussian data. LDA is optimized by a global criterion. Thus, it is not sufficiently flexible to cope with the multi-modal distributed data. We propose a new fea...

متن کامل

Feature extraction techniques

2 Examples of feature extraction techniques 2 2.1 Image processing basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Sobel edge detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 Canny edge detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.4 Hough tra...

متن کامل

Disguised Face Recognition by Using Local Phase Quantization and Singular Value Decomposition

Disguised face recognition is a major challenge in the field of face recognition which has been taken less attention. Therefore, in this paper a disguised face recognition algorithm based on Local Phase Quantization (LPQ) method and Singular Value Decomposition (SVD) is presented which deals with two main challenges. The first challenge is when an individual intentionally alters the appearance ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006